【答案】
本题中,由于甲、乙两人在正常道路和泥泞道路上的速度都相同,可以发现,如果甲、乙各自绕着圆形跑道跑一圈,两人在正常道路和泥泞道路上所用的时间分别相同,那么两人所用的总时间也就相同,所以,两人同时出发,跑一圈后同时回到 A点,即两人在 A点迎面相遇,然后再从 A点出发背向而行,可以发现,两人的行程是周期性的,且以一圈为周期.
在第一个周期内,两人同时出发背行而行,所以在回到出发点前肯定有一次迎面相遇,这是两人第一次迎面相遇,然后回到出发点是第二次迎面相遇;然后再出发,又在同一个相遇点第三次相遇,再回到出发点是第四次相遇……可见奇数次相遇点都是途中相遇的地点,偶数次相遇点都是 点.本题要求的是第99次迎面相遇的地点与 点的距离,实际上要求的是第一次相遇点与 点的距离.
对于第一次相遇点的位置,需要分段进行考虑:由于在正常道路上的速度较快,所以甲从出发到跑完正常道路时,乙才跑了 米,此时两人相距100米,且之间全是泥泞道路,此时两人速度相同,所以再各跑50米可以相遇.所以第一次相遇时乙跑了 米,这就是第一次相遇点与 点的距离,也是第99次迎面相遇的地点与 点的距离.
【答案】 150米