学而思奥数天天练栏目每日精选中等、高等难度试题各一道。中难度试题适合一些有过思维基础训练、考 题学习经历,并且奥数成绩中上的学生。高难度试题立足于杯赛真题、综合应用和加深各知识点,适合一些志在竞赛中 夺取佳绩的学生。
·本周试题由学而思奥数名师精选、解析,以保证试题质量。
·每周末,我们将一周试题汇总为word版本试卷,您可下载打印或在线阅读。
·每道题的答题时间不应超过15分钟。答案明日公布!
难度:★★★★
把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?
【答案】
首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。
解题:首先,任意连续9个自然数之和能被9整除,也就是说,一直写到2007能被9整除。所以答案为1
难度:★★★★★
有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.
【答案】
设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9
根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察
abcd
2376
cdab
根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立。
先取d=3,b=9代入竖式的百位,可以确定十位上有进位。
根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再观察竖式中的十位,便可知只有当c=6,a=3时成立。
再代入竖式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。