学而思奥数天天练栏目每日精选中等、高等难度试题各一道。中难度试题适合一些有过思维基础训练、考题学习经历,并且奥数成绩中上的学生。高难度试题立足于杯赛真题、综合应用和加深各知识点,适合一些志在竞赛中夺取佳绩的学生。
·本周试题由学而思教研部《小学奥数系统总复习》编者白亚娟老师精选、解析,以保证试题质量。
·每周末,我们将一周试题汇总为word版本试卷,您可下载打印或在线阅读。
·每道题的答题时间不应超过15分钟。答案明日公布!
【几何专题】
1.难度:★★★
如图,在△ABC中,DC=2BD,AF=FD.
如果△ABC的面积等于,那么阴影部分的面积为多少?
【解析】连接DE,因为AF=FD,所以三角形DFC的面积与三角形AFC的面积相等。通过转化,求两个阴影部分面积实际就是求三角形AEC的面积,连接ED,把三角形BED的面积看作一份,则三角形EDC的面积就是2份。因为三角形AEC的面积同样等于三角形EDC的面积,因此总面积就是1+2+2=5份。则阴影面积为。
2.难度:★★★
在ΔABC中BD:DC=2:1,AE:EC=1:3求BO:OE。
【解析】解法一,用按比例分配的方法,观察线段BE正好被AD分成BO与OE两部分,求这两部分的比,可以AD为底,B,E为顶点构造两个三角形,BAD与EAD,这样就可以面积比与线段比之间架一座桥。因为三角形BAD的三个顶点都在三角形ABC的边上,因此把三角形ABC的面积看作单位“1”,就可以用来表示ABD的面积,用AE的长占AC的1/4,CD的长占CB的1/3, 来表示AED的面积。
因为:SΔABD:SΔAED==8:1,所以BO:OE=8:1。
解法二:这幅图形一看就感觉它是燕尾定理的基本图,但2个燕尾似乎少了一个,因此应该补全,所以第一步我们要连接OC,因为AE:EC=1:3 (条件)
所以SΔAOE/SΔCOE=1:3 若设SΔAOE=x,则SΔCOE=3x
SΔAOC=4x,根据燕尾定理 SΔAOB:SΔAOC=BD:DC=2:1
所以SΔAOB=8x BO:OE=SΔAOB:SΔAOE=8x:x=8:1。
-------------------------------------------------------------------------------------
《小学奥数系统总复习》 图书简介
《小学奥数系统总复习》分 上下两册,涵盖了奥数中8大专题,共设21讲。每讲设置4大模块,即闯关目标、赛前热身、实战演练和逐级闯关,构建了完整的奥数知识体系,全面覆盖小学奥 数知识。此外,本书对部分经典例题录制了视频,免费赠送给各位学员。本书附有2010年和2011年的北京集训队选拔试题,为本书增加了新的亮点。 为了让大家更好的获得知识、理解知识,本书设有论坛交流环节,读者可以登录E度论坛点击进入图书答疑帖,即可实现在线提问、交流心得,名师天天坐镇论坛,等你来交流! |